PHYSICAL CHEMISTRY

DPP No. 43

Total Marks: 29

Max. Time: 33 min.

Topic: Chemical Equilibrium

Type of Questions

Subjective Questions ('-1' negative marking) Q.1 to Q.4

Multiple choice objective ('-1' negative marking) Q.5

Comprehension ('-1' negative marking) Q.6 to Q.8

M.M., Min.

[16, 20]

(4 marks, 5 min.)

[4, 4]

(3 marks, 3 min.)

[9, 9]

- 1. The equilibrium constant of the reaction $A_2(g) + B_2(g) \rightleftharpoons 2 AB(g)$ at 100° C is 50. If a one litre flask containing one mole of A_2 is connected to a two litre flask containing two moles of B_2 , how many moles of AB will be formed at 373 K?
- 2. The progress of reaction : A(g) ⇒ nB(g) with time, is presented in fig. given below. Determine :

- (i) the value of n
- (ii) the equilibrium constant, K_c and
- 3. One mole of $Cl_2(g)$ and 3 moles of $PCl_5(g)$ are placed in a 100 litre vessel heated to 227°C. The equilibrium pressure is 2.05 atm. Assuming ideal behaviour, calculate the degree of dissociation of $PCl_5(g)$ and K_p for the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$.
- 4. When equal volumes of 0.2 M AgNO_3 and 1 M KCN solutions were mixed then at equilibrium, concentration of Ag⁺ was found to be 10^{-6} M. While when equal volumes of $0.2 \text{ M Zn(NO}_3)_2$ solution and of 1 M KCN solution were mixed then at equilibrium, concentration of Zn²⁺ ion was found to be 10^{-12} M. Then find the equilibrium constant K_C of following reaction: $2[Ag(CN)_2]^-$ (aq.) $+ Zn^{2+}$ (aq.) $= [Zn(CN)_4]^{2-}$ (aq.) $+ 2Ag^+$ (aq.).
- 5.* Consider two equilibrium $2Cl_2(g) + 2H_2O(g) \rightleftharpoons 4HCl(g) + O_2(g)$ and $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ simultaneously established in a closed vessel. When some amount of HCl is added at equilibrium, which of the following statements is correct :
 - (A) amount of N₂ gas will decrease.
- (B) amount of N₂ gas will increase.
- (C) amount of O_2 gas will decrease.
- (D) nothing can be said with certainty.

Comperhension # (Q.6 to Q.8)

Solid NH_4I rapidly decompose as follows : NH_4I (s) \longrightarrow NH_3 (g) + HI (g)

At equilibrium, total pressure = 0.5 atm.

Now, HI starts decomposing as follows : 2HI (g) \rightleftharpoons $H_2(g) + I_2(g)$

At final equilibrium, partial pressure of $H_2 = \frac{3}{16}$ atm.

Now answer the following questions:

- **6.** Calculate new total pressure :
 - (A) 0.9 atm
- (B) 1 atm
- (C) 0.6 atm
- (D) 0.5 atm
- 7. Calculate K_n for the reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$:
 - (A) $\frac{9}{4}$
- (B) $\frac{9}{8}$
- (C) $\frac{9}{16}$
- (D) None of these

- **8.** Partial pressure of HI at equilibrium is :
 - (A) 0.05 atm
- (B) 0.1 atm
- (C) 0.15 atm
- (D) 0.125 atm

Answer Kev

DPP No. # 43

1. 1.868 2. (i) 2, (ii) 1.2 mol/L

 α = 0.33, K_o = 0.41 atm. 3.

4.

810

5.* (BC) 6. (B) 7. (A) 8. (D)

Hints & Soluti

DPP No. # 43

1.
$$A_2(g) + B_2(g) \iff 2AB(g) \quad K_c = 50$$

$$\frac{1-x}{3} \quad \frac{2-x}{3} \qquad \qquad \frac{2x}{3}$$

$$50 = \frac{\frac{2x}{3} \cdot \frac{2x}{3}}{\frac{1-x}{3} \cdot \frac{2-x}{3}} = \frac{4x^2}{(1-x)(2-x)} = \frac{4x^2}{2-3x+x^2}$$

$$\Rightarrow 100 - 150 x + 50x^2 = 4x^2$$

∴ no. of mol of AB =
$$\frac{2x}{3}$$
 = 1.868.

∴ AB की मोल संख्या =
$$\frac{2x}{3}$$
 = 1.868

2. (i) From the graph
$$0.3 \times n = 0.6$$

(ii)
$$K = (0.6)^2 / 0.3 = 1.2 \text{ mol } / L$$

3.
$$PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(g)$$
. Initial 3 0 1 $(3-x)$ x 1+ x 2

Initial total moles = (3+1) = 4.

Now from Ideal gas equation

$$PV = nRT = P \times 100 = 4 \times 0.082 \times 500$$

$$P = 0.082 \times 20 = 1.64$$
 atm.

At equilibrium Total mole = 3 - x + x + 1 + x = (4 + x)

$$PV = nRT$$
.

$$2.05 \times 100 = (4+x) \times 0.082 \times 500$$
.

$$2.05 = (4+x) \times 0.41$$

$$5 = 4 + x$$

$$x = 1$$
.

$$\alpha = \frac{\text{No. of mole dissociated}}{\text{Initially total mole taken}} = \frac{1}{3} = 0.33.$$

$$P_{PCl_5} = \frac{2}{5} \times 2.05$$

$$P_{PCl_5} = \frac{2}{5} \times 2.05$$
 ; $P_{PCl_3} = \frac{1}{5} \times 2.05$

$$P_{Cl_2} = \frac{2}{5} \times 2.05$$

$$K_p = \frac{\left(\frac{1}{5} \times 2.05\right) \left(\frac{2}{5} \times 2.05\right)}{\left(\frac{2}{5} \times 2.05\right)} = [0.41]$$

4.
$$Ag^{+} + 2CN^{-} \Longrightarrow [Ag(CN)_{2}]^{-}$$

$$t = 0 \quad 0.1 \quad 0.5 \quad 0$$

$$t_{eq} \quad 10^{-6} \quad 0.3 \quad 0.1 \quad K_{1} = \frac{10}{9} \times 10^{6}$$

$$Zn^{2+} + 4CN^{-} \Longrightarrow [Zn(CN)_{4}]^{2-}$$

$$t = 0 \quad 0.1 \quad 0.5 \quad 0$$

$$eq. \quad 10^{-12} \quad 0.1 \quad 0.1 \quad K_{2} = \frac{0.1}{(0.0)^{4} \cdot 10^{-12}} = 10^{16}$$

Substracting two times Ist reaction from IInd reaction, we will get the required reaction, so

$$K_{eq} = \frac{10^{15}}{\left(\frac{10}{9}\right)^2 \times 10^{12}} = \frac{10^3 \times 81}{100} = 810$$
 Ans. 810

When some amount of HCl is added to equilibrium, the first eq will shift in backward direction leading to 5.* decrease in amount of O_2 . Then, the second eq. will shift in backward direction to increase the amount of O_2 . Thus, amount of N_2 gas will increase.

